

Safecom - Power Booster (US)

Increasing the power area covered by power supply.

87V -15A AC/AC Stabilizer -Zero Crossing technology & RF-PASS 1-GHz

Patented Power Booster solves the power distribution problem in a CATV network caused by high-resistance and low energy-efficient coax or electric cables.

Passive, standalone element, **life time operation & ONLINE (Zero Crossing patented technology**).15A 30-87Vac (US)/ 15A 30-64Vac (EU).

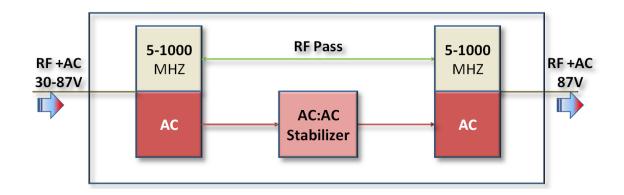
The unit ensures the optimal voltage levels required at remote locations by optical nodes, trunk amplifiers, and line extenders overcoming voltage drop along the power or coaxial cable. Increasing the distance between remote power sources leads to a reduction in the number of power insertion points across the network, less power supplies (especially under-loaded power supplies are unnecessary), less street cabinets and permits are needed and less flat fees to the utility company for each of the power supply (even if it was never used).

Safecom's cost-saving patented Power Booster compensate the voltage drop over coax cable and enables to utilize the DPS remote backup technology between distant locations. The Power Booster can be seamlessly connected via cable to the DPS4 enabling robust power redundancy system and overcome the range limitation of the previous DPS generations. In addition to HFC networks, the power booster now enables back up to Deep Fiber networks with central powering using existing coax infrastructure between powering centers.

- ✓ RF Pass 5-1000MHz.
- ✓ US 90V Standard & Europe 60V.
- ✓ Support full 15A rms input /output.
- ✓ Smooth transfer between gears –Zero Crossing Technology.
- ✓ Lifetime operation.
- ✓ Top-efficiency -Genius Toroidal Transformer.
- ✓ Electronic 15A Overload Protection.
- ✓ Weatherproof Enclosure.
- ✓ Wall or Pole Mounted.
- ✓ Automatic Standby mode.
- ✓ Opposite connection protected.
- ✓ Input & Out Surge Protection
- ✓ Protecting downstream network failures caused by inrush current, low voltage and current overload.

Habustan St (P.O 132) Herut

E-mail: david@safecom.tv


Herut Israel 40691

Specification:

Elect	tronic	
Input Frequency (Hz)		50/60 Hz
Max	Output Current (A)	15A
Max :	Input Current	15A
Self current Load		80mA(EU) 190mA(US)
	Input operating Voltage range (Vac)	30÷ 90 Vac (US)
	Optimal Voltage range	51-90Vac
US	Voltage gain ratio (input 78- 90 Vac)	1:1.01
87V	Voltage gain ratio (68-78)	1:1.15
	Voltage gain ratio(58.5-68Vac)	1:1.33
	Voltage gain ratio (input below 58.5Vac)	1:1.52
	Input operating Voltage range (Vac)	30÷ 65 Vac (EU)
	Optimal Voltage range	37-65 Vac
EU	Voltage gain ratio (input 56- 64 Vac)	1:1.01
61V	Voltage gain ratio (49-56 Vac)	1:1.14
	Voltage gain ratio (42-49 Vac)	1:1.36
	Voltage gain ratio (30-42 Vac)	1:1.57
Load Regulation (%)		<2%
Efficiency (%)		>96%
Transfer time (0 sec)		ONLINE
Standard Features		
Direct Connection In / Out 5/8 inch		\checkmark
Electronic Overload protection		√
Power Booster indication Green /Red LED		√
Auto Standby mode		√

Mechanical		
Dimensions (L , W , H) mm	250 X 200 X 152	
Weight (Kg/lbs)	6/13.2	
Connector 5/8 inch	√	
Environment		
Operating Temperature	-40°C ÷ +65°C	
Storage Temperature	-40°C ÷ +70°C	
Humidity (waterproof) IPX8	0 ÷ 100%	
Corrosion	ASTM B 336Hr	
Finishes	Chromate Conversion	
RF		
Bandwidth	5-1000MHz	
Impedance	75 Ohm	
Through loss 5-250 MHz	< 0.5 dB	
Through loss 250-500 MHz	< 0.7 dB	
Through loss 500-700 MHz	< 0.9 dB	
Through loss 700-800 MHz	< 1.0 dB	
Through loss 800-900 MHz	< 1.2 dB	
Through loss 900-1000 MHz	< 1.5 dB	
Return Loss	> 20 dB	
RFI	130 dB	
Hum Modulation	> 65dB	

Test report for Power Booster 90V-15A (US) PB90V15A4

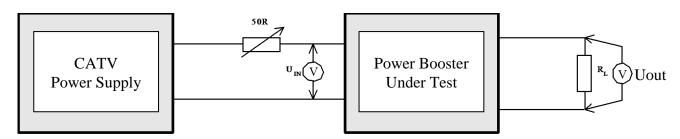
Scope:

To perform the test of Power Booster performance over a full input voltage range with variable load from the no-load condition and up to the Current Limit range.

Identification:

The appliance had the following marking plate:

Habustan St (P.O 132) Herut Herut Israel 40691


E-mail: david@safecom.tv

Lab test procedure:

- 1. Connect Unit Under Test (UUT) to a ferro-resonant or Pure Sine Power Supply through a variable resistor (simulating a coax cable).
- 2. Connect a True RMS Volt Meter to the input and to the output of the UUT.
- 3. Set the resistor to minimize resistance.
- 4. Turn on the power supply, the indicator LED should light in Red for two seconds and turns to the green indicating presence of regular output voltage.
- 5. Change the input variable resistor to obtain input voltage of 30Vac and record the output voltage, calculate the gear gain.
- 6. Change the input variable resistor to obtain input voltage that would cause transition from the 1^{st} to the 2^{nd} gear, record input and output voltage before and after the transition and calculate the gear gain.
- 7. Repeat step 6 for all the designed input voltage range up to 64Vac.
- 8. Measure & record no-load input current.
- 9. Turn off the power supply and connect a variable load resistor ($10\Omega 1KW$) to the UUT output.
- 10. Turn on the UUT.
- 11. Perform Load Regulation; maintain a constant input voltage of 55V and change the load to achieve load current between no-load & up to the current that would cause the input current limit.
- 12. Repeat steps 6 & 7 with an output load of 8A.
- 13. Check & record input current limit for all input voltage ranges.
- 14. Turn off the Power Supply & disconnect UUT from the test bench.

Test bench:

Habustan St (P.O 132) Herut

E-mail: david@safecom.tv

Herut Israel 40691

Test report:

Voltage & Current Measurments:

No-Load Test:

	U _{IN}	U _{OUT}	Gain	Gear Transfer
	30.0V (Min) Start operate	46.7V	1.52	4
	40.0V	61.1V	1.52	4
Optimal Range(US standard)	51.3V	78.0V	1.52	4
	58.5V	89.9V	1.52	4
	58.6V	77.6V	1.33	3
	67.3V	89.5V	1.33	3
	67.4V	77.6V	1.15	2
SSU	77.3V	89.9V	1.15	2
standard)	77.4V	77.6V	1.00	1
	86.0V	86.3V	1.003	1
	89.7V	90.0V	1.003	1

No load input current: ~160mA @ 50/60Hz

Load Regulation:

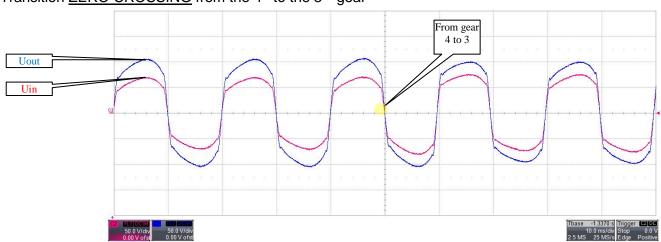
Load Regulation:					
U_{IN}	$U_{ m OUT}$	Iout			
75.0V	87.25V	0A			
75.0V	86.9V	2.0A			
75.0V	86.5V	4.0A			
75.0V	86.1V	6.0A			
75.0V	85.9V	8.0A			
75.0V	85.6V	10.0A			
75.0V	85.4V	12.0A			
75.0V	85.3V	12.8A ⁽¹⁾			

Notes:

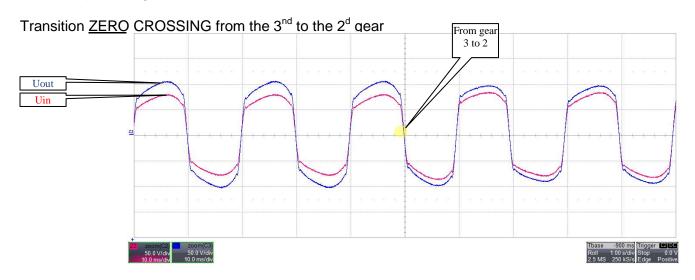
 UUT was in Gear #2, input overload current limit of 15A was activated.

Notes:

1. UUT was in Gear #2, input overload current limit of 15A was activated.

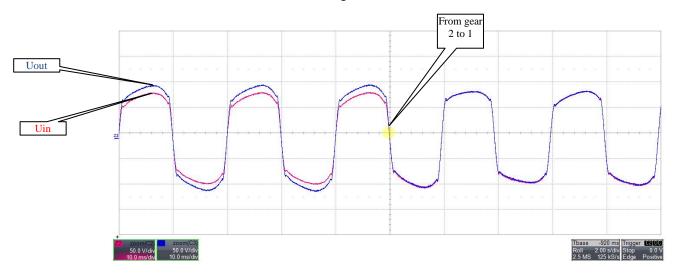

Input current limit: 15A±0.5A

Gear transitions under load:


U _{IN}	U_{OUT}	Iout
40.0V	57.7V	8.0A
58.8V	86.0V	8.0A
67.0V	87.5V	8.0A
77.7V	88.0V	8.0A
85.2V	83.7V	8.0A

Waveforms: ZERO CROSSING TECHNOLOGY (P.S Quasi-square wave Ferro-resonance)

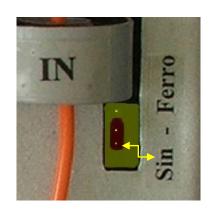
Transition ZERO CROSSING from the 4st to the 3nd gear

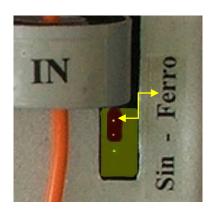


Red – input voltage Blue – output voltage

Transition ZERO CROSSING from the 2nd to the 1^d gear

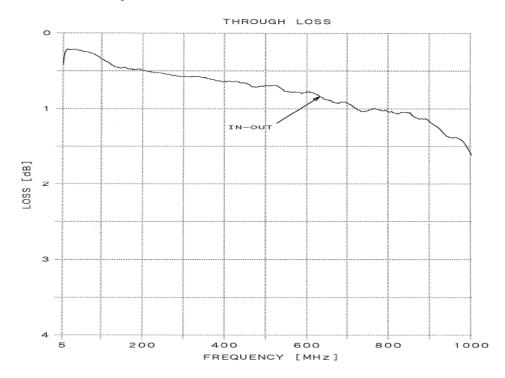
The transitions were tested @ $I_{OUT} = 3A_{RMS}$

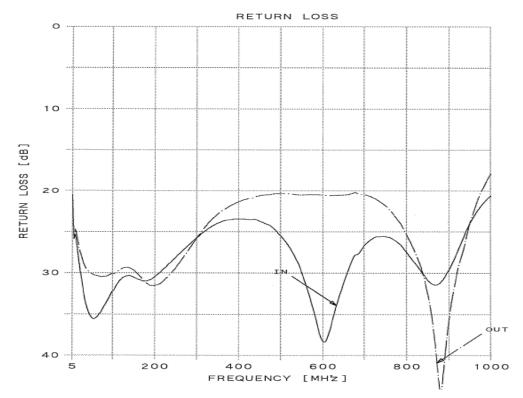

Inspected by: Michael Militinsky


Signature:

Date: <u>07.01.2</u>013

Power Booster configuration


Power Booster includes a **jumper connector** on the PCB that enables to use the Power Booster with pure sine wave (T-Former) & with the Quasi-square wave (Ferro-resonance PS).



B. RF test / Insertion & Rutun Loss 5-1000 MHz.

